unc-68 encodes a ryanodine receptor involved in regulating C. elegans body-wall muscle contraction

نویسندگان

  • E B Maryon
  • R Coronado
  • P Anderson
چکیده

Striated muscle contraction is elicited by the release of stored calcium ions through ryanodine receptor channels in the sarcoplasmic reticulum. ryr-1 is a C. elegans ryanodine receptor homologue that is expressed in body-wall muscle cells used for locomotion. Using genetic methods, we show that ryr-1 is the previously identified locus unc-68. First, transposon-induced deletions within ryr-1 are alleles of unc-68. Second, transformation of unc-68 mutants with ryr-1 genomic DNA results in rescue of the Unc phenotype. unc-68 mutants move poorly, exhibiting an incomplete flaccid paralysis, yet have normal muscle ultrastructure. The mutants are insensitive to the paralytic effects of ryanodine, and lack detectable ryanodine-binding activity. The Unc-68 phenotype suggests that ryanodine receptors are not essential for excitation-contraction coupling in nematodes, but act to amplify a (calcium) signal that is sufficient for contraction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Muscle-specific functions of ryanodine receptor channels in Caenorhabditis elegans.

Ryanodine receptor channels regulate contraction of striated muscle by gating the release of calcium ions from the sarcoplasmic reticulum. Ryanodine receptors are expressed in excitable and non-excitable cells of numerous species, including the nematode C. elegans. Unlike vertebrates, which have at least three ryanodine receptor genes, C. elegans has a single gene encoded by the unc-68 locus. W...

متن کامل

The ESCRT-II proteins are involved in shaping the sarcoplasmic reticulum in C. elegans.

The sarcoplasmic reticulum is a network of tubules and cisternae localized in close association with the contractile apparatus, and regulates Ca(2+)dynamics within striated muscle cell. The sarcoplasmic reticulum maintains its shape and organization despite repeated muscle cell contractions, through mechanisms which are still under investigation. The ESCRT complexes are essential to organize me...

متن کامل

Regulation of Distinct Muscle Behaviors Controls the C. elegans Male's Copulatory Spicules during Mating

We demonstrate through cell ablation, molecular genetic, and pharmacological approaches that during C. elegans male mating behavior, the male inserts his copulatory spicules into the hermaphrodite by regulating periodic and prolonged spicule muscle contractions. Distinct cholinergic neurons use different ACh receptors and calcium channels in the spicule muscles to mediate these contractile beha...

متن کامل

Heat-Induced Calcium Leakage Causes Mitochondrial Damage in Caenorhabditis elegans Body-Wall Muscles

Acute onset of organ failure in heatstroke is triggered by rhabdomyolysis of skeletal muscle. Here, we showed that elevated temperature increases free cytosolic Ca2+ [Ca2+]f from RYR (ryanodine receptor)/UNC-68 in vivo in the muscles of an experimental model animal, the nematode Caenorhabditis elegans This subsequently leads to mitochondrial fragmentation and dysfunction, and breakdown of myofi...

متن کامل

Caenorhabditis elegans as a model organism for RYR1 variants and muscle ageing

Background Malignant hyperthermia (MH), central core disease (CCD), exertional heat stroke (EHS) and late-onset axial myopathy have been attributed to mutations in ryanodine receptor type 1 (RYR1). The RyR1 protein is over 5000 amino acid residues long, making manipulation of the mammalian gene difficult. The ryanodine receptor in Caenorhabditis elegans is UNC-68, which has 40% amino acid ident...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 134  شماره 

صفحات  -

تاریخ انتشار 1996